1 Using administrative healthcare database records to study trends in prescribed medication

2 dispensed during pregnancy in Belgium from 2003 to 2017

- 3 Lionel Larcin1 Murielle Lona2,3 Güngör Karakaya2,3 Alexis Van Espen3 Christine Damase-Michel4
- 4 Fati Kirakoya-Samadoulougou1
- 5
- 6 1Centre de recherche Epidémiologie, Biostatistiques, Recherche Clinique, School of Public Health,
- 7 Université Libre de Bruxelles (U.L.B.), Bruxelles, Belgium
- 8 2Agence Intermutualiste (IMA), Bruxelles, Belgium
- 9 3Service études des Mutualités Libres, Bruxelles, Belgium
- 10 4Pharmacologie Médicale, Université de Toulouse UPS, Inserm CERPOP, CHU, Toulouse, France
- 11 Correspondence
- 12 Lionel Larcin, Centre de recherche
- 13 Epidémiologie, Biostatistiques, Recherche
- 14 Clinique, School of Public Health, Université
- 15 Libre de Bruxelles (U.L.B.), Route de Lennik
- 16 808, CP 596, 1070 Bruxelles, Belgium.
- 17 Email: lionel.larcin@ulb.be
- 18 Abstract
- 19
- 20 Purpose: The aim of this study was to describe trends in medication prescriptions dispensed during
- 21 pregnancy in Belgium using administrative healthcare database records from a representative
- 22 sample of the Belgian population.
- 23
- Methods: Pregnant women were identified with reimbursement codes associated with the delivery of a baby. Data were extracted for three study periods, each over 3 years: 2003–2005, 2009–2011, and 2015–2017. The age-standardized prevalence of dispensed medications during pregnancy were computed and logistic regression models were used to evaluate the trends in prevalence across the study periods. The most frequently dispensed medications were listed for each study period.
- 29
- 30 Results: The study included 23 912 pregnancies. The age-standardized prevalence of pregnant
- 31 women with at least one dispensed medication increased across the three study periods from 81.8.%
- to 89.3%. The median number and interquartile range of the different medications dispensed during

- pregnancy rose from 2 (1–6) to 3 (1–7) between the first and last study periods. In the 2015–2017
- 34 period, the most frequently dispensed medications during pregnancy included progesterone (25.5%),
- paracetamol (17.8%), and amoxicillin (17.1%). The data also showed an increasing trend for the
- 36 dispensation of ibuprofen and ketorolac during pregnancy across the three study periods.
- 37
- 38 Conclusions: The prevalence of prescribed medications dispensed during pregnancy increased in
- 39 Belgium from 2003 to 2017 with high proportion for Progesterone and Antibiotics. Utilization of
- 40 certain nonsteroidal anti-inflammatory drugs (NSAIDs) increased between 2003 and 2017, despite
- 41 recommendations to avoid them.
- 42 KEYWORDS
- 43 administrative healthcare database, medication, pharmacoepidemiology, pregnancy
- 44 Key Points
- The proportion of women for whom at least one prescribed medication was dispensed
- 46 increased across the three study periods.
- The prescription of progesterone dispensed to the women included in our study was very
- 48 high, and potential overuse should be evaluated.
- The use of recommended vaccines during pregnancy increased drastically between 2003and 2017.
- The use of ibuprofen and ketorolac during pregnancy increased between 2003 and 2017.
- 52 The permanent sample database can be used to follow up medication prescriptions to pregnant
- 53 women in Belgium.
- 54

55 INTRODUCTION

- 56 The use of medications during pregnancy has reduced the risks associated with diseases, thereby
- 57 improving the health of mothers and fetuses during pregnancy. However, due to the lack of available
- 58 safety data, it is equally important to consider the possible risks associated with the use of
- 59 medications during pregnancy. The relatively high prevalence of medications dispensed during
- 60 pregnancy, varying from 60% to 97%, has been highlighted in several studies (1–5). Utilization should
- 61 be prudent, and any uptrend at the population level should be monitored.
- 62 Many factors can influence prescription practices at the local level, such as the health system and
- 63 reimbursement policies, the local prevalence of chronic diseases, and the average age of pregnant
- 64 women in the population concerned. The collection of data related to local prescribing practices is

65 important for the development of recommendations for health professionals, and there is a need for66 more indepth research adapted to local needs.

67 In the Belgian context, little is known about medication prescribing practices during pregnancy. A 68 cross-sectional study conducted by Ceulemans et al. revealed that the prevalence of medication use 69 during the week prior to survey completion was 52% (6). A recent study conducted by an 70 independent Health Insurance Fund (Mutualités Libres/Onafhankelijke ziekenfondsen) indicated that 71 between 2013 and 2016, 8 out of 10 pregnant women had a medication prescription dispensed 72 during pregnancy (7). Most of the available data do not describe the use of medication during 73 pregnancy at the population level, and to date, no study, has looked specifically at trends in the use 74 of medications during pregnancy. One of the recurrent areas of concern is the potential overuse of 75 nonsteroidal anti-inflammatory drugs (NSAIDs) during pregnancy. Several warnings were given by 76 Medicines Agencies in Europe about the risks associated with the use of NSAIDs during pregnancy. 77 More recently, in March 2020 the Belgian agency for medicines and health products warned that 78 pregnant women should avoid taking NSAIDs during pregnancy (8). 79

Indeed, many studies have shown that NSAID intake during pregnancy is an important risk factor for
multiple adverse effects. During the last trimester, the risk of premature closure of the ductus

81 arteriosus has been well documented, (9,10) and this might lead to cardiac and pulmonary

82 complications for the fetus. Other adverse effects associated with NSAID use include the risk of

83 miscarriage and the potential risk of congenital defects when taken during the first trimester of

84 pregnancy (11,12). This study provides more information about the trends in the prevalence of

85 medication dispensing during pregnancy across three periods of 3 years between 2003 and 2017.

86 In particular, we focus on the 20 most frequently dispensed medications and pay special attention to

the most frequently dispensed NSAIDs during pregnancy.

88

89 METHODS

90 Data sources: The permanent sample (EPS)

The permanent sample (EPS) is a 1/40 representative data sample of the Belgian population covered by compulsory health insurance. It contains approximately 300 000 individuals and is representative in terms of sex and age for the national population. The EPS contains anonymized information on all reimbursed medications, only reimbursed medications are recorded from public pharmacies but all prescribed and dispensed medications are recorded from hospital pharmacies. Medications are captured in the database through a pharmaceutical product code containing a unique national code number for every product (CNK-code), from public or hospital pharmacies. Each medication was

- 98 classified according to the Anatomical Therapeutic Chemical (ATC) classification at the fifth level for
- 99 extraction. Other information included in the database were the dispensing date, the region of
- 100 residence and some sociodemographic data (13). The EPS data can be used by health administrative
- 101 services or researchers based on strict authorization.
- 102

103 Participants

- 104 Participants were selected from the EPS. Participants were women who delivered within the three 3-
- 105 year periods (2003–2005, 2009– 2011, and 2015–2017) as per the data available in the EPS.
- 106 Pregnancies were identified by the INAMI-RIVIZ code nomenclature (14) related to all reimbursement
- acts associated with obstetric deliveries. The code list is displayed in Table S1.
- 108 We restricted our study to pregnancies associated with mothers residing in Belgium who were
- 109 included in the EPS for the whole pregnancy period. Because self-employed persons in Belgium did
- 110 not benefit from medication reimbursement in the first period of study (2003–2005), we excluded
- 111 them for all three periods.
- 112

113 Periods of exposure and medication exposures

114 Because data on gestational age were not available, we used an algorithm that was previously used 115 by Andrade et al (15,16) to define the first day of exposure. The algorithm assumes a pregnancy 116 duration of 270 days. This period is then divided into three trimesters of 90 days, with the first 117 trimester starting 270 days before the delivery date. The ATC classification was used at the fifth level 118 to select and classify all medications. To list the 20 most dispensed medications during pregnancy all 119 reimbursed medications covered by the social security system and all medications prescribed and 120 dispensed at hopsital level were considered. To define NSAID exposure we use a list of NSAID 121 excluding the Antithrombotic agents (ATC code B01). The NSAIDs list is displayed in Table S2. For 122 each delivery, we determined whether the different pregnancy periods involved exposure to 123 medication or not by determining if at least one prescribed medication was dispensed during the 124 period under consideration.

125

126 <u>Statistical analysis</u>

Statistical analyzes were carried out using SAS Enterprise Guide 7 and Stata 15. The level of
 significance was fixed at 5%. The estimates prevalence of prescribed medications dispensed during

129 pregnancy across study periods were standardized by the direct method to the year 2017 of women

130 population distribution as reference from Belgian national statistic using age groups 15–19, 20–29, 131 30–39 and 40–50 years. Age-standardized estimates were calculated overall and by region of residence. Trends over time for the prevalence of prescribed medications dispensed during 132 133 pregnancy were assessed using logistic regression models, with the study periods entered as a 134 continuous variable. For each of the three study periods, we determined the 20 most dispensed 135 medications by calculating the crude prevalence of each chemical substance dispensed during 136 pregnancy. The crude prevalence of prescribed medications dispensed during pregnancy was 137 obtained by dividing the number of pregnancies involving exposure to at least one drug identified at 138 the fifth ATC level by the total number of pregnancies in the considered periods. Crude prevalence 139 was calculated for the entire pregnancy and for each pregnancy trimester.

140 The most frequently dispensed NSAIDs were determined by calculating the prevalence of each NSAID

141 reported in the preestablished NSAIDs list. We also present the prevalence with omission of the

seven-day exposure period before delivery, because NSAIDs are known to be prescribed and

dispensed for postpartum pain at the end of pregnancy. Trend tests in the crude prevalence of

144 NSAIDs exposure during pregnancy across the study periods were performed using $\chi 2$.

145

146 RESULTS

147 Data on medications dispensed during pregnancy were available for 26 346 pregnancies for the three 148 periods between 2003 and 2017. Women residing outside Belgium (n = 114), those not included in 149 the EPS for the whole pregnancy period (n = 289), and self-employed women (n = 2031) were 150 excluded, leaving 23 912 pregnancies in the study. The mean age of mothers at childbirth increased 151 by 0.9 years across the three study periods, from 29.4 years in 2003–2005 to 30.3 years in 2015 2017. 152 Table 1 shows the proportion of pregnancies in each age and region category for each three-year 153 period. Table 2 reports the prevalence of at least one prescription dispensed during pregnancy 154 overall and by maternal characteristics for the three periods of study.

155

For the 2003–2005 period, the age-standardized prevalence of at least one medication dispensed
during pregnancy was 81.8%. The age-standardized prevalence increased to 84.8% for the 2009–
2011 period and to 89.3.% for the 2015–2017 period. During the three consecutive periods, the
prevalence of medication dispensing increased significantly across all categories of maternal age
except ages ≥41 years. Similarly, all regions of residence had significant increase in prevalence of
medication dispensed. An increase in the mean and standard deviation (SD) prescription of different
medicines during pregnancy was also observed across the study periods, from 4.3 (5.4) for the 2003–

163 2005 period to 5 (5.2) for the 2015–2017 period. When we examined the median and interguartile 164 range (IQR), the number of different medications prescribed during pregnancy was found to increase 165 from 2 (1–6) for the 2003–2005 period to 3 (1–6) for the 2009–2011 period and to 3 (1–7) for the 166 most recent period (2015–2017). Table 3 presents the prevalence by pregnancy periods of the most 167 dispensed medications during pregnancy for the three study periods. There were 22 different drugs among the top 20 for each period. Between 2003–2005 and 2015–2017, the three most significant 168 169 increases in prevalence were observed for influenza purified antigen (from 0.2% to 12.2%), pertussis 170 purified antigen (from 0% to 11%), and paracetamol (from 10.1% to 17.8%). Other increases of note 171 were progesterone (from 20% to 25.5%), and fosfomycin (from 6.1% to 13.2%). The three most 172 important declines in prevalence between 2003–2005 and 2015–2017 occurred for amoxicillin (from 173 20.2% to 17.1%), amoxicillin and beta-lactamase inhibitor (from 12.5% to 8.8%), and miconazole 174 (from 15.1% to 12.4%). Not considering the blood substitutes and perfusion solution ATC (B05), 175 nontherapeutic product ATC (V07), and antiseptic and disinfectant ATC (D08) subgroups, the most 176 frequently dispensed medications during pregnancy for the last study period (2015–2017) were 177 progesterone (25.5%), paracetamol (17.8%), and amoxicillin (17.1%).

178

179Table 4 presents for each of the 22 most dispensed medications the distribution of dispensations

180 between the hospital and the community pharmacies. In the last study period (2015–2017),

181 considering the list of 22 most frequently dispensed medications during pregnancy, not including the

day of delivery, 60.4% of dispensed medications were inpatient medications and 39.6% were

183 outpatient medications.

184

Table 5 presents the prevalence by pregnancy periods of the six most dispensed NSAIDS during
pregnancy for the three study periods. In the last study period (2015–2017) not considering the 7
days before delivery, the six most prevalent NSAIDs dispensed during pregnancy were ibuprofen
(4.42%), diclofenac (2.54%), ketorolac (0.78%), naproxen (0.63%), indomethacin (0.41%), and
piroxicam (0.4%). Between 2003–2005 and 2015–2017, the dispensation of certain NSAIDs increased
sharply. The proportion of pregnancies exposed to NSAIDs more than doubled: From 2.44% to 4.42%
for ibuprofen and from 0.17% to 0.78% for ketorolac.

192

193 DISCUSSION

194 The use of medication during pregnancy is on the rise in Belgium

195 Between 2003 and 2017, the use of prescribed medications dispensed during pregnancy increased in 196 Belgium. It is difficult to compare our results with those of other studies, for example our study only 197 included reimbursed medications from public pharmacies while other studies might include over-the-198 counter medications. Additionaly, in our study, all inpatient medications prescribed and dispensed 199 were also accounted for while they are often not captured in other studies. The increasing trend 200 found in our study has been also observed in other contexts (1,17,18). Changes in the list of 201 reimbursed medications during the three study periods have possibly influenced our results. Some 202 medications could have been available in one period but not in the other. We have assessed the ATC 203 codes present in one period but not in another that appear in the list of medications removed from 204 reimbursement between 2002 and 2017. Two medications with a prevalence above 0.5% in the 205 period 2003–2005: the mepartricin (2.8%) and the propacetamol (2.1%), were both removed from 206 reimbursement in 2006. Other ATC codes had very low frequencies. In the two other periods, there 207 were 24 ATC codes removed from the reimbursement list and all had a prevalence below 0.06%.

208

209 Most frequently dispensed medications during pregnancy: Points of attention

210 Progesterone

211 Progesterone was found to be in the top three medications for each of the three study periods. 212 Compared to the Netherlands (8.3%) (19) and Italy (20.1%), (2) the use of progesterone during 213 pregnancy in Belgium appears to be rather high (25.5%) in 2015–2017 period and deserves to be 214 highlighted. The use of progesterone is common during pregnancy due to its expected reduction of 215 the risk of preterm delivery in women with a single gestation, a history of spontaneous preterm 216 delivery, or a short cervical length (20,21). On the contrary, potential side effects associated with the 217 use of progesterone during pregnancy may exist. Increases in psychiatric disorders have been shown 218 among children exposed to progesterone in utero (22). Other studies have associated vaginal 219 progesterone treatment with a risk of gravidic cholestasis (23,24). Therefore, we should be mindful 220 not to overprescribe progesterone.

221

222 Antibacterial for systemic use

Among the top 20 most frequently dispensed medications during pregnancy, the most represented therapeutic subgroup was systemic antibacterial medications. This result is consistent with those from other European and North American studies (25–27). In the context of a growing threat of antibiotic resistance, we should be conscious of this high rate of antibiotic use during pregnancy and be reasonable in the prescription of antibiotics, particularly fosfomycin, which showed a strong increasing trend. Additionally, the level of safety in terms of risk associated with fosfomycin is less
 documented, and in general the long-term risks associated with the use of antibiotics remain poorly
 documented.

231

232 Increased use of recommended vaccinations

Vaccination rates during pregnancy increased sharply in Belgium between 2003 and 2017. This is
because the influenza vaccine has been recommended by the Advisory Committee on Immunization
Practices since 2004.28 The pertussis vaccine has been recommended by the Superior Health Council
of Belgium during pregnancy since 2013, due to an increasing incidence of pertussis (29). In Belgium,
the pertussis vaccine is also available free-of-charge directly through specific health programs
subsidized by communities and is then not registered in our database of reimbursed medications.
Therefore, the rate in our study likely underestimates the actual rate of coverage in Belgium.

240

241 NSAIDs dispensing

242 We looked at the six most frequently dispensed NSAIDs during pregnancy for analgesic and anti-243 inflammatory indications: Ibuprofen, diclofenac, ketorolac, naproxen, indomethacin, and piroxicam. 244 We found that the majority of these NSAIDs were dispensed during hospital stays. In the 2015–2017 245 period and for pregnancy as a whole, the percentage of dispensation at the hospital level was 45.5% 246 for ibuprofen, 72.1% for diclofenac, 100% for ketorolac, 40.3% for piroxicam, 22.2% for 247 indomethacin, and 41.2% for naproxen. When we looked specifically at exposure during the third 248 trimester, an interesting finding was that approximately 75% of the cases of the six most frequently 249 dispensed during the third trimester occurred in the seven-day period before delivery. This high 250 prevalence could be explained by prescriptions being dispensed just before delivery but being used 251 afterward to treat pain in the postpartum period. The NSAIDs prescribed and dispensed during the 252 seven-day predelivery period were mainly ibuprofen and diclofenac, which are frequently used to 253 treat postpartum pain. Throughout the entire pregnancy, not considering the 7 days before delivery, 254 increasing trends were observed for the dispensation of ibuprofen and ketorolac across the three 255 study periods (from 2.44% to 4.42% and from 0.17% to 0.78%, respectively). More specifically, in the 256 third trimester, ibuprofen was the most frequently dispensed NSAID, with 0.52% of pregnancies 257 exposed, followed by diclofenac with 0.34%. A possible reason for the use of ibuprofen, diclofenac, 258 and indomethacin during the third trimester is that these NSAIDs can be used as tocolytics (30). A 259 network metaanalysis indicated that prostaglandin inhibitors (e.g., ibuprofen) can be used as a first 260 choice tocolytic agent, followed by calcium channel blockers as the second alternative. While our

data show that the majority of dispensations of the most frequently dispensed NSAIDs during
 pregnancy occurred in the hospital, where the occurrence of ductus arteriosus can be monitored, a
 significant number were dispensed by community pharmacists where the absence of monitoring
 represents a clear concern.

265

266 <u>The use of the permanent sample (EPS) database to study medication use during pregnancy:</u>

267 Strength and limitations

The EPS database has some advantages. The database is a random sample representative of the 268 269 Belgian population. Pregnant women who have given birth can be extracted using their delivery 270 reimbursement codes. Maternal exposure to medications can then be determined because the 271 database contains information about the ATC codes of the medications dispensed, the quantities of 272 medications dispensed, the dispensing dates. Since data are available from 2002, this database offers 273 the opportunity to retrospectively study habits in drug prescription. However, it also presents 274 important limitations, including missing key information such as the exact date of the beginning of 275 the pregnancy. In this study, the start of the first trimester was estimated by subtracting 270 days 276 from the delivery date. By doing this, we might have included medications dispensed before the 277 beginning of the pregnancy and might miss medications dispensed for pregnancies lasting more than 278 270 days. We assumed that the medications dispensed were used by the mother during the same 279 trimester period, because this information was not available in the database. The medications 280 recorded from public pharmacies only included those reimbursed by health insurers, but some 281 medications are available over the counter. This might have led to an underestimation of medication 282 use during pregnancy. This is, for example, the case of NSAIDs also available over the counter. In 283 Belgium, before 2008, self-employed persons had a different benefit insurance scheme, so we 284 decided not to include them in the three study periods. We do not think that this affected the 285 generalizability of our study, as in the two last study periods, we compared the data with and 286 without the inclusion of self-employed persons, and the prevalence of the use of medications 287 remained very similar.

288

289 CONCLUSION

The study results indicate that the use of prescribed and dispensed medications during pregnancy is increasing in Belgium. Progesterone exposure during pregnancy may be higher in Belgium compared to in other contexts. The use of antibiotics remained high during the three study periods. The dispensation of ibuprofen and ketorolac was shown to increase, despite recommendations to avoid these medications during pregnancy. A welcome observation was the increase in dispensation of recommended vaccines between 2003 and 2017. Having accurate information about the use of medications during pregnancy should allow the development of better target campaigns to make pregnant women aware of the potential risks associated with medication use during pregnancy. The use of the permanent sample database EPS was useful as an exploratory approach to characterize trends in prescription medication habits during pregnancy in Belgium.

300

301 ACKNOWLEDGMENT

302 We thank the InterMutualist Agency (IMA) for supplying the data and the independent Health

303 Insurance Fund (Mutualités Libres/ Onafhankelijke ziekenfondsen) for helping us with the data

304 management. The authors received no financial support for the research, authorship, and/or

305 publication of this article.

306

307 AUTHOR CONTRIBUTIONS

Lionel Larcin performed the statistical analysis and wrote the draft of the manuscript. Murielle Lona
 and Güngör Karakaya contributed to the data acquisition and interpretation of data. Alexis Van Espen

310 has been involved in the data extraction and statistical analysis. Christine Damase-Michel contributed

to interpretation of data and revisions of the manuscript. Fati Kirakoya-Samadoulougou formulated

312 research goals and objectives, supervised statistical analysis, interpretation of

results and revisions of the manuscript. All authors have contributed to the design of the study and

314 approved the final version of the manuscript.

315

316 ETHICS STATEMENT

317 The authors state that no ethical approval was needed.

318

Smolina K, Hanley GE, Mintzes B, Oberlander TF, Morgan S. Trends and determinants of
 prescription drug use during pregnancy and postpartum in British Columbia, 2002–2011: a
 population-based cohort study. PloS one. 2015;10(5):e0128312.

Gagne JJ, Maio V, Berghella V, Louis DZ, Gonnella JS. Prescription drug use during pregnancy:
 a population-based study in Regione Emilia-Romagna, Italy. Eur J Clin Pharmacol. 2008;64(11):1125.

Haas DM, Marsh DJ, Dang DT, Parker CB, Wing DA, Simhan HN, et al. Prescription and other
 medication use in pregnancy. Obstet Gynecol. 2018;131(5):789-98.

Lacroix I, Hurault C, Sarramon M, Guitard C, Berrebi A, Grau M, et al. Prescription of drugs
 during pregnancy: a study using EFEMERIS, the new French database. Eur J Clin Pharmacol.
 2009;65(8):839-46.

329 5. Bérard A, Abbas-Chorfa F, Kassai B, Vial T, Nguyen KA, Sheehy O, et al. The French Pregnancy
330 Cohort: Medication use during pregnancy in the French population. PloS one. 2019;14(7):e0219095.

331 6. Ceulemans M, Van Calsteren K, Allegaert K, Foulon V. Health products' and substance use
332 among pregnant women visiting a tertiary hospital in Belgium: A cross-sectional study.

333 Pharmacoepidem Dr S. 2019;28(9):1231-8.

334 7. Mutualités Libres . Médicaments tératogènes ou fœtotoxiques utilisés pendant la grossesse
335 en Belgique. Belgium. 2018.

Koren G, Florescu A, Costei AM, Boskovic R, Moretti ME. Nonsteroidal antiinflammatory
 drugs during third trimester and the risk of premature closure of the ductus arteriosus: a meta analysis. Ann Pharmacother. 2006;40(5):824-9.

339 9. Ishida H, Kawazu Y, Kayatani F, Inamura N. Prognostic factors of premature closure of the
340 ductus arteriosus in utero: a systematic literature review. Cardiol Young. 2017;27(4):634-8.

Snijder CA, Kortenkamp A, Steegers EA, Jaddoe VW, Hofman A, Hass U, et al. Intrauterine
exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadia
in the offspring: the Generation R Study. Hum Reprod. 2012;27(4):1191-201.

Li D-K, Ferber JR, Odouli R, Quesenberry C. Use of nonsteroidal antiinflammatory drugs
during pregnancy and the risk of miscarriage. Am J Obstet Gynecol. 2018;219(3):275. e1-. e8.

12. Institut national d'assurance maladie-invalidité [Internet]. Belgium: INAMI; 2020. La

nomenclature des prestations de santé; [updated 2020 Nov 23; cited Dec 20] [about 2 screens].

348 Available from: <u>https://www.inami.fgov.be/fr/nomenclature/Pages/default.aspx#NomenSoft</u>

Andrade SE, Gurwitz JH, Davis RL, Chan KA, Finkelstein JA, Fortman K, et al. Prescription drug
use in pregnancy. Am J Obstet Gynecol. 2004;191(2):398-407.

14. Andrade SE, Raebel MA, Morse AN, Davis RL, Chan KA, Finkelstein JA, et al. Use of
prescription medications with a potential for fetal harm among pregnant women. Pharmacoepidem
Dr S. 2006;15(8):546-54.

15. Engeland A, Bjørge T, Klungsøyr K, Hjellvik V, Skurtveit S, Furu K. Trends in prescription drug
use during pregnancy and postpartum in Norway, 2005 to 2015. Pharmacoepidem Dr S.
2018;27(9):995-1004.

16. Demailly R, Escolano S, Quantin C, Tubert-Bitter P, Ahmed I. Prescription drug use during
pregnancy in France: a study from the national health insurance permanent sample.
Pharmacoepidem Dr S. 2017;26(9):1126-34.

360 17. Zomerdijk IM, Ruiter R, Houweling LM, Herings RM, Straus SM, Stricker BH. Dispensing of
361 potentially teratogenic drugs before conception and during pregnancy: a population-based study. Br
362 J Obstet Gynaecol. 2015;122(8):1119-29.

363 18. Rundell K, Panchal B. Preterm labor: prevention and management. Am Fam Physician.
364 2017;95(6):366-72.

Romero R, Conde-Agudelo A, Da Fonseca E, O'Brien JM, Cetingoz E, Creasy GW, et al. Vaginal
progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations
with a short cervix: a meta-analysis of individual patient data. Am J Obstet Gynecol. 2018;218(2):16180.

369 20. Soyer-Gobillard M-O, Gaspari L, Courtet P, Puillandre M, Paris F, Sultan C.

370 Neurodevelopmental disorders in children exposed in utero to synthetic progestins: analysis from the

national cohort of the Hhorages Association. Gynecol Endocrinol. 2019;35(3):247-50.

372 21. Bacq Y, Sapey T, Brechot M, Pierre F, Fignon A, Dubois F. Intrahepatic cholestasis of

pregnancy: a French prospective study. Hepatology. 1997;26(2):358-64.

22. Tsur A, Kan P, Leonard SA, Girsen A, Shaw GM, Stevenson DK, et al. 68: Vaginal progesterone

treatment is associated with intrahepatic cholestasis of pregnancy. Am J Obstet Gynecol.

376 2020;222(1):S58-S9.

377 23. Bérard A, Sheehy O. The Quebec Pregnancy Cohort–prevalence of medication use during
378 gestation and pregnancy outcomes. PLoS One. 2014;9(4):e93870.

379 24. Bookstaver PB, Bland CM, Griffin B, Stover KR, Eiland LS, McLaughlin M. A review of antibiotic
380 use in pregnancy. Pharmacotherapy. 2015;35(11):1052-62.

381 25. Souza RB, Trevisol DJ, Schuelter-Trevisol F. Bacterial sensitivity to fosfomycin in pregnant
382 women with urinary infection. Braz J Infect Dis. 2015;19(3):319-23.

Keating GM. Fosfomycin trometamol: a review of its use as a single-dose oral treatment for
patients with acute lower urinary tract infections and pregnant women with asymptomatic
bacteriuria. Drugs. 2013;73(17):1951-66.

Harper SA, Fukuda K, Uyeki TM, Cox NJ, Bridges CB. Prevention and control of influenza:
recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbidity and
Mortality Weekly Report: Recommendations and Reports. 2005;54(8):1-41.

Maertens K, Vermeiren S, Top G, Damme P, Leuridan E. Pertussis vaccination of pregnant
women: Rationale for the actual recommendations in Belgium. Tijdschrift voor Geneeskunde.
2015;71:497-505.

392 29. Besinger RE, Niebyl JR, Keyes WG, Johnson TR. Randomized comparative trial of

indomethacin and ritodrine for the long-term treatment of preterm labor. Am J Obstet Gynecol.

394 1991;164(4):981-6.

30. Haas DM, Caldwell DM, Kirkpatrick P, McIntosh JJ, Welton NJ. Tocolytic therapy for preterm
delivery: systematic review and network meta-analysis. Bmj. 2012;345:e6226.

397

398

399 TABLES:

	Period 2003–2005 (N = 7779)	Period 2009–2011 (N = 8345)	Period 2015–2017 (N = 7788)
Variables	% (n)	% (<i>n</i>)	% (<i>n</i>)
Maternal age			
≤20 years	3.6 (277)	3 (248)	2.2 (168)
21–30 years	55.7 (4335)	54.8 (4572)	51.2 (3991)
31–40 years	39 (3038)	40.1 (3351)	44.1 (3433)
≥41 years	1.7 (129)	2.1 (175)	2.5 (197)
Region of residence			
Flanders	46.4 (3612)	47.9 (4001)	48.8 (3804)
Wallonia	41 (3189)	39.4 (3286)	37.8 (2945)
Brussels region	12.6 (978)	12.7 (1058)	13.3 (1039)

400

401

402

403

404

	Period 2003–2005		Period 2	2009–2011	Period 2		
	N	% (<i>n</i>)	N	% (<i>n</i>)	Ν	% (<i>n</i>)	<i>p</i> -Value
Overall	7779	78.3 (6093)	8345	83.3 (6951)	7788	86.7 (6755)	<0.001 *
Maternal age (years)							<0.001 **
≤20 years	277	78.7 (218)	248	83.1 (206)	168	89.9 (151)	
21–30 years	4335	77.3 (3353)	4572	82.6 (3776)	3991	85.9 (3430)	
31–40 years	3038	79.1 (2402)	3351	84.1 (2817)	3433	87 (2986)	
≥41 years	129	93 (120)	175	86.9 (152)	197	95.4 (188)	
Region of residence							<0.001 **
Flanders	3612	73.7 (2661)	4001	80.7 (3228)	3804	85 (3232)	
Wallonia	3189	82.9 (2644)	3286	86.1 (2830)	2945	88.7 (2611)	
Brussels region	978	80.6 (788)	1058	84.3 (892)	1039	87.7 (911)	

Table 2. Prevalence of at least one medication dispensed during pregnancy in Belgium between 2003 and 2017

405

Table 3. Prevalence of the most frequently dispensed medications during pregnancy in Belgium between 2003 and 2017.												
Period 2003–2005 (N = 7779)				779)	Period 2009–2011 (N = 8345)				Period 2015–2017 (N= 7788)			
		0	exposed % (regnancies e	-		Pregnancies exposed % (n)			
Medication (ATC code)	All	T1	T2	T3	All	T1	T2	T3	All	T1	T2	T3
progesterone (G03DA04)	20 (1559)	8.4 (655)	7.8 (603)	10.9 (848)	23.6 (1971)	10.4 (869)	8.5 (706)	12.8 (1072)	25.5 (1988)	11.7 (912)	8.7 (681)	13.4 (1041)
electrolytes (B05BB01)	19.2 (1496)	3.3 (256)	2.6 (205)	14.8 (1148)	22 (1832)	5.1 (422)	2.6 (216)	16.3 (1358)	25.6 (1991)	6 (468)	3.2 (246)	19.2 (1495)
amoxicillin (J01CA04)	20.2 (1573)	6.1 (474)	7.9 (618)	9.5 (742)	19.5 (1631)	6.2 (519)	7.4 (616)	8.8 (730)	17.1 (1329)	5.7 (443)	5.9 (463)	7.8 (605)
paracetamol (N02BE01)	10.1 (785)	1.5 (119)	1.4 (107)	7.7 (598)	14.1 (1176)	4.3 (356)	2.6 (217)	8.7 (725)	17.8 (1387)	6 (465)	3.5 (274)	10.4 (807)
miconazole (G01AF04)	15.1 (1175)	3.3 (253)	5.2 (402)	7.7 (600)	14 (1167)	2.9 (239)	5.1 (424)	7.4 (617)	12.4 (962)	2.5 (196)	4.4 (342)	6.4 (497)
solution for injection (V07AB40)	9.6 (743)	1.3 (101)	0.8 (59)	7.7 (602)	13.7 (1140)	3 (250)	1.1 (88)	10.1 (846)	17.2 (1341)	4.5 (354)	1.6 (123)	12.3 (957)
chlorhexidine (D08AC02)	11.3 (877)	1 (80)	1.4 (108)	9.4 (727)	12.7 (1056)	1.6 (134)	1.4 (118)	10.2 (855)	13.9 (1079)	2.1 (166)	1.9 (145)	11 (857)
carbohydrates (B05BA03)	13.4 (1043)	1.4 (107)	1.7 (129)	11 (855)	11.1 (929)	1.2 (96)	1 (84)	9.3 (779)	10.8 (840)	1.4 (108)	0.7 (57)	9 (699)
Amoxicillin and beta-lactamase inhibitor (J01CR02)	12.5 (969)	3.7 (287)	4.1 (321)	6.2 (479)	10.5 (879)	3.4 (281)	3.3 (277)	4.8 (399)	8.8 (686)	3.2 (246)	3 (230)	3.8 (299)
fosfomycin (J01XX01)	6.1 (472)	1 (78)	2 (156)	3.5 (274)	9.8 (820)	1.8 (149)	2.9 (243)	6 (498)	13.2 (1029)	2.4 (183)	4.8 (370)	7.6 (590)
oxytocin (H01BB02)	9 (702)	0.1 (6)	< 0.01 (1)	9 (696)	9 (752)	0.1 (9)	0 (0)	8.9 (744)	9.9 (772)	0.1 (4)	0 (0)	9.9 (768)
lidocaïne (N01BB02)	7.9 (612)	1.1 (88)	1 (79)	5.8 (454)	9.1 (756)	1.7 (145)	1 (80)	6.6 (548)	10.2 (797)	2.1 (160)	0.8 (62)	7.7 (596)
sufentanil (N01AH03)	7.3 (570)	0.7 (53)	0.2 (15)	6.6 (511)	8.5 (712)	0.8 (65)	0.4 (33)	7.5 (623)	9.3 (723)	0.7 (52)	0.2 (16)	8.5 (661)
phytomenadione (B02BA01)	7.5 (581)	0 (0)	0 (0)	7.5 (581)	8.6 (721)	< 0.1 (1)	0 (0)	8.6 (720)	8.8 (684)	< 0.1 (1)	0 (0)	8.8 (683)
ropivacaine (N01BB09)	5.1 (399)	<0.01 (1)	<0,01 (2)	5.1 (397)	5.8 (481)	0.2 (15)	<0.1 (2)	5.6 (464)	6.4 (495)	0.2 (12)	0.1 (5)	6.1 (478)
influenza. purified antigen (J07BB02)	0.2 (13)	< 0.1 (5)	< 0.1 (3)	< 0.1(5)	4.3 (362)	0.5 (39)	2.1 (179)	1.7 (144)	12.2 (952)	1 (79)	5.2 (408)	6 (467)
pertussis. purified antigen (J07AJ52)	0 (0)	0 (0)	0 (0)	0 (0)	1.1 (90)	<0.1 (3)	0.1 (9)	0.9 (78)	11 (857)	<0.1 (2)	0.8 (61)	10.2 (794)
ranitidine (A02BA02)	3.5 (275)	0.6 (46)	0.5 (42)	2.7 (2019)	6.2 (516)	1.4 (117)	1.6 (130)	3.9 (326)	9 (702)	1.8 (142)	2.1 (161)	6.3 (492)
levothyroxine sodium (H03AA01)	2.7 (210)	1.7 (131)	1.8 (137)	2.1 (160)	5.5 (457)	2.8 (230)	3.1 (256)	4.5 (378)	8.2 (642)	4.5 (350)	5.3 (409)	6.2 (483)
immunoglobulin anti-d rh (J06BB01)	4.2 (328)	0.4 (27)	1.8 (136)	2.4 (190)	7.6 (637)	0.5 (42)	1.4 (116)	6.4 (532)	7.6 (593)	0.6 (44)	1.1 (85)	6.7 (525)
butylscopolamine (A03BB01)	6 (464)	0.9 (73)	1.3 (102)	4.1 (318)	5.4 (453)	0.7 (54)	0.7 (60)	4.2 (354)	6 (468)	0.7 (57)	0.8 (61)	4.7 (366)
povidone iodine (D08AG02)	4.5 (346)	0.5 (38)	1 (79)	3.1 (240)	5 (420)	1 (86)	1.3 (107)	2.9 (245)	5.4 (421)	1.2 (96)	0.9 (72)	3.4 (262)

		The 6 most frequently dispensed NSAIDs						
	Pregnancy period	ibuprofen (M01AE01)	diclofenac (M01AB05)	ketoralac (M01AB15)	naproxen (M01AE02)	indomethacin (M01AB01)	piroxicam (M01AC01	
	all	2.74 (213)	4.1 (322)	0.46 (36)	1.7 (129)	0.43 (34)	1.25 (97)	
	T1	1.8 (140)	1.12 (87)	0.13 (10)	0.89 (69)	0.013 (1)	0.85 (66)	
Pregnancies	T2	0.48 (37)	0.44 (34)	0.03 (2)	0.22 (17)	0.14 (11)	0.17 (13)	
exposed % (<i>n</i>)	T3	0.67 (52)	2.64 (205)	0.31 (24)	0.64 (50)	0.33 (26)	0.3 (23)	
2003-2005	T3-last week	0.33 (26)	0.6 (46) 0.013 (1)		0.18 (14)	0.24 (19)	0.1 (8)	
(<i>N</i> = 7779)	Last week	0.33 (26)	2.04 (159)	0.3 (23)	0.46 (36)	0.06 (5)	0.19 (15)	
	All without last week	2.44 (190)	2.15 (167)	0.17 (24)	1.22 (95)	0.37 (29)	1.05 (82)	
	all	4.46 (372)	4.77 (398)	0.93 (78)	1.05 (88)	0.53 (44)	0.49 (41)	
	T1	2.8 (234)	1.79 (149)	0.42 (35)	0.78 (65)	0.03 (3)	0.43 (36)	
Pregnancies	T2	0.74 (62)	0.46 (38)	0.1 (8)	0.11 (9)	0.11 (9)	0.02 (2)	
exposed % (<i>n</i>)	T3	1.11 (93)	2.62 (219)	0.43 (36)	0.2 (17)	0.38 (32)	0.05 (4)	
2009-2011	T3-last week	0.51 (43)	0.54 (45)	0.03 (3)	0.05 (4)	0.33 (28)	0.05 (4)	
(<i>N</i> = 8345)	Last week	0.6 (50)	2.08 (174)	0.4 (33)	0.16 (13)	0.05 (4)	0 (0)	
	All without last week	3.88 (324)	2.79 (233)	0.55 (46)	0.89 (75)	0.48 (40)	0.49 (41)	
	all	5.61 (437)	4.38 (341)	1.1 (86)	0.64 (50)	0.45 (35)	0.4 (31)	
	T1	3.53 (275)	2 (156)	0.71 (55)	0.58 (45)	0.012 (1)	0.36 (28)	
Pregnancies	T2	0.56 (44)	0.3 (23)	0.05 (4)	0.06 (5)	0.14 (11)	0.06 (5)	
exposed	T3	1.84 (143)	2.25 (175)	0.35 (27)	0.03 (2)	0.32 (25)	0.012 (1)	
% (<i>n</i>) 2015–2017 (<i>N</i> = 7788)	T3-last week	0.5 (40)	0.33 (26)	0.012(1)	0.012 (1)	0.31 (24)	0.012 (1)	
	Last week	1.32 (103)	1.91 (149)	0.33 (26)	0.012(1)	0.012 (1)	0 (0)	
	All without last week	4.42 * (344)	2.54 (198)	0.78 * (61)	0.63* (49)	0.41 (32)	0.4* (31)	

Table 4. Most frequently dispensed nonsteroidal anti-inflammatory drugs (NSAID) dispensed during pregnancy in Belgium.